Series MC coalescing filters

Ports G1/4, G3/8 and G1/2 Modular Metal bowl and bayonet-type mounting

Series MC coalescing filters are available with G1/4, G3/8 and G1/2 ports. The bowls of these filters are made of metal with a transparent sight glass and may have a condensate drain valve which can provide either a manual or semiautomatic function.

A version with automatic draining of condensate is also available.

GENERAL DATA

Construction modular, coalescing elements Materials zama, NBR, technopolymer G1/4 G3/8 G1/2 Max. condensate capacity cm³ 28 78 Weight kg 0,342 0,718 0,688 Mounting vertical in line or wall-mounting Operating temperature -5°C ÷ 50°C at 10 bar (with the dew point of the fluid lower than 2°C at the min. working temperature)

Porosity of filtering element 0,01 µm

Draining of condensate manual - semi-automatic standard

Finish enamelled

with standard drain and protected depressurisation 0,3 ÷ 16 bar Operating pressure

with depressurisation 0,3 ÷ 10 bar

with automatic drain 1,5 ÷ 12 bar for G3/8 and G1/2

Nominal flow see graph

TREATMENT

CODING EXAMPLE

MC	2	02	-	F	В	0

SERIES MC

SIZE: 2

1 = G1/4 2 = G3/8 - G1/2

02

PORTS: 04 = G1/4 38 = G3/8 02 = G1/2

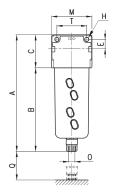
F = FILTER F

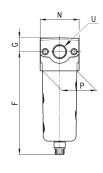
FILTERING ELEMENT: B = 0,01µm B

DRAINING OF CONDENSATE: 0

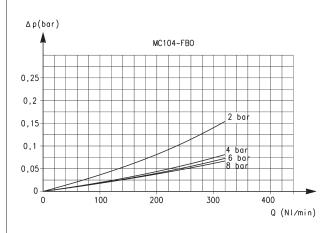
0 = manual - semi-automatic
3 = automatic (only for G3/8 and G1/2)
4 = depressurisation (only G1/4)
5 = depressurisation, protected
8 = no drain, port 1/8

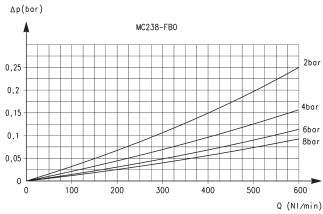
For condensate drains see the section 3/5.10


Coalescing filters Series MC



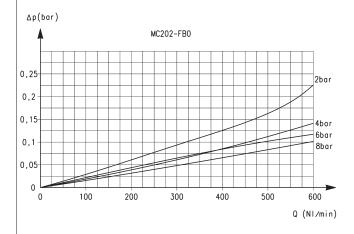
FA01 = coalescing filter without drain with threaded port FA02 = coalescing filter with semi-automatic manual drain FA03 = coalescing filter with automatic drain





DIMENSIONS														
Mod.	Α	В	С	E	F	G	Н	M	N	0	Р	Q	Т	U
MC104-FB0	143	102	41	11	126,5	16,5	4,5	45	45	G1/8	37	54	35	G1/4
MC238-FB0	184	133	51	14	163	21	5,5	62	60	G1/8	53	73	46	G3/8
MC202-FB0	184	133	51	14	163	21	5,5	62	60	G1/8	53	73	46	G1/2

FLOW DIAGRAMS


Flow diagram for model: MC104-FB0 ΔP = Pressure drop Q = Flow

In order to guarantee the indicated performances, the maximum flow of the filter must be the one indicated in the graph. A higher flow rate is possible but the same performances are not guarenteed.

Flow diagram for model: MC238-FB0 ΔP = Pressure drop Q = Flow

In order to guarantee the indicated performances, the maximum flow of the filter must be the one indicated in the graph. A higher flow rate is possible but the same performances are not guarenteed.

FLOW DIAGRAMS

Flow diagram for model: MC202-FB0 ΔP = Pressure drop

Q = Flow

In order to guarantee the indicated performances, the maximum flow of the filter must be the one indicated in the graph. A higher flow rate is possible but the same performances are not guarenteed.