Multi-channel process and program controller

- Brilliant 5" colour graphics display, with 27 colours
- Freely configurable screen templates
- Up to 4 controller channels
- 50 programmes, with 1,000 segments under dynamic management

Type ST20
Resistance thermometer/RTD

Type 8035
Flow transmitter/ Batch controller

Type 8175
Level transmitter

PLC
Programmable Logic Control systems

The Type 1150 is a process and program controller with up to 4 controller or program channels. The instrument is built to the format $144 \mathrm{~mm} \times 130 \mathrm{~mm}$ for a standard $92 \mathrm{~mm} \times$ 92 mm panel cut-out and a mounting depth of 170 mm .

The display is a $5^{\prime \prime}$ color graphics display (27 colours). The layout of the screen templates can be individually adapted and adjusted. Two freely configurable screen templates make it possible to customize the placing of texts, process values, background pictures and icons.

A maximum of 4 analog inputs and 6 logic inputs are available, as well as six expansion slots for switched or analog outputs.

A setup program is available for comfortable configuration from a PC.

Linearizations for the usual transducers are stored within the instrument, four customerspecific linearization tables can be programmed. A math and logic module can be used to adapt the instrument to a very wide range of control tasks.

Two serial interfaces, RS422/485 or ProfibusDP, can be used to integrate the instrument into a data network.

Modules can be retrofitted quite simply by the user (see block structure).

The electrical connection is made at the rear of the instrument, via plug-in screw terminals.

Block structure

Displays and controls

Operating concept

The operation, configuration and displays are organized in a structural arrangement in the screen templates. The insertion of the (variable) softkey functions in the lower section of the screen keeps the user continually informed about the operating options. The instrument is configured through the well-established level structure (operating, parameter and configuration levels). A customer-specific arrangement of those parameters that
frequently have to be altered (user level) can also be implemented by using the setup program.
A wide variety of process values and status displays (e.g. switching states of the limit comparators) are visualized clearly and in detail. Operating states and alarms are indicated by definable texts and icons in a reserved area of the screen. Unused screen templates can be switched out of the display.

Operating concept

[^0]
Explanations/functions

Logic functions

- Start/stop of self-optimization
- Change to manual mode
- Inhibit manual mode
- Ramp stop/OFF
- Setpoint changeover
- Process value changeover
- Parameter set switching
- Key/level inhibit
- Text display
- Screen saving
- Screen switching
- Acknowledge limit comparators
- Program start/stop/cancel
- Inhibit program start
- Program selection
- Fast forwards
- Segment change

The logic functions can be combined with one another.

Functions of the outputs

- Analog input variables
- Program time
- Math
- Residual program time
- Process value
- Controller outputs
- Setpoint
- Limit comparators
- Ramp end value
- Control contacts
- Control deviation
- Logic inputs
- Output level
- Logic
- Cascade output level
- Program end
- Program end value
- Ramp end
- Residual segment time
- Segment time

Program controller

50 programs can be created, with a maximum of 4 program channels. The program channels run synchronously, and can each contain up to 100 segments. A total of 1000 segments can thus be programmed.

Furthermore, 8 control contacts can be programmed and assigned to the program channels. These are also run synchronously.

The start of a program can be initiated manually, by pressing a key on the instrument (or an external button), or through the programming of the start conditions. The start time can be determined either by defining a start delay or by programming a date and time. A weekly program can also be entered into the instrument, through the setup program.

Program channels are made up from a sequence of segments containing defined segment setpoints. The individual segment setpoints can optionally be linked to ramp or step functions.

The state of the 8 control contacts can be influenced by each segment. In addition, one of two programmable parameter sets and an upper and lower limit (tolerance band) for monitoring the process value can be assigned to each segment.

Endless loops can be implemented by programming repeated cycles.

Segments are defined by the segment setpoint and the segment time.

Explanations/functions

Program editor

Setup program (accessory)

Interfaces

The integrated program editor can be used for the comfortable creation and alteration of programs.

The program profiles and the states of the control contacts can be graphically displayed as a function of the time.

The setup program can be used to program a second setpoint sequence per program channel.

The setup program for configuring the instrument is available in German, English and French. Using a PC, you can create and edit sets of data, and transfer them to the controller or read them out from the instrument. The data sets are stored and managed.

Profibus-DP ${ }^{1}$

The Profibus-DP interface can be used to integrate the controller into a fieldbus system operating according to the Profibus-DP standard. This Profibus version is especially designed for communication between automation systems and decentralized peripheral devices at the field level, and optimized for speed. The data transmission is made serially, using the RS485 standard.

GSD generator, the project-planning tool that is supplied with the package (GSD = Gerätestammdaten, i.e. basic device data), is used to make a selection of device characteristics for the controller to create a standardized GSD file that is used to integrate the controller into the fieldbus system.
${ }^{1)}$ Option

Parameter level

All the parameters and their meanings are included in the table. Some parameters may be omitted or meaningless for a particular type of controller. Two parameter sets can be stored, to handle special applications.

Parameter	Value range	Factory setting	Meaning
Controller structure	P, I, PD, PI, PID	PID	Control loop feedback
Proportional band	0 to 9999 digits	0 digits	Size of the proportional band 0 means that the controller structure is out of action!
Derivative time	0 to 9999 sec	80 sec	Determines the differential component of the controller output signal
Reset time	0 to 9999 sec	350 sec	Determines the integral component of the controller output signal
Cycle time	0 to 9999 sec	20 sec	When using a switched output, the cycle time should be chosen so that the energy flow to the process is quasi continuous, i.e. as con- tinuous as is practicable without overloading the switching elements
Contact spacing	0 to 999 sec	0 digits	The spacing between the two controller contacts for double- setpoint or modulating controllers, or proportional controllers with an integrated actuator driver
Switching differential	0 to 999 digits	1 digits	Hysteresis for switching controllers with proportional band $=0$
Actuator time	5 to 3000 sec	60 sec	The actually utilized operating time of the regulator valve with modulating controllers or proportional controllers with an integrated actuator driver
Working point	-100 to $+100 \%$	0%	The output level for P and PD controllers (if $\mathrm{x}=\mathrm{w}$ then $\mathrm{y}=\mathrm{Y} 0)$
Output level limiting	0 to 100%	100%	
-100 to $+100 \%$	-100%		

Electrical isolation

Technical data

Thermocouple input

Designation		Measurement range			Measurement accuracy ${ }^{1)}$	Ambient temperature error
Fe-Con "L"		-200	to	$+900^{\circ} \mathrm{C}$	$\leq 0.25 \%$	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Fe-Con "J"	EN 60584	-200	to	$+1200^{\circ} \mathrm{C}$	$\leq 0.25 \%$	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Cu-CuNi "U"		-200	to	$+600^{\circ} \mathrm{C}$	$\leq 0.25 \%$	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Cu-Con "T"	EN 60584	-200	to	$+400^{\circ} \mathrm{C}$	$\leq 0.25 \%$	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
NiCr-Ni "K"	EN 60584	-200	to	$+1372{ }^{\circ} \mathrm{C}$	$\leq 0.25 \%$	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
NiCr-Con "E"	EN 60584	-200	to	$+1000^{\circ} \mathrm{C}$	$\leq 0.25 \%$	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
NiCrSi-NiSi "N"	EN 60584	-200	to	$+1300^{\circ} \mathrm{C}$	$\leq 0.25 \%$	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Pt10Rh-Pt "S"	EN 60584	0	to	$1768^{\circ} \mathrm{C}$	$\leq 0.25 \%$	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Pt13Rh-Pt "R"	EN 60584	0	to	$1768^{\circ} \mathrm{C}$	$\leq 0.25 \%$	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Pt30Rh-Pt6Rh "B"	EN 60584	0	to	$1820^{\circ} \mathrm{C}$	$\leq 0.25 \%$	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
W5Re-W26Re "C"		0	to	$2320^{\circ} \mathrm{C}$	$\leq 0.25 \%$	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
W3Re-W25Re "D"		0	to	$2495{ }^{\circ} \mathrm{C}$	$\leq 0.25 \%$	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
W3Re-W26Re		0	to	$2400^{\circ} \mathrm{C}$	$\leq 0.25 \%$	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Cold junction		Pt 100 internal, external or constant				

${ }^{1)}$ With 250 msec sampling time

Input for resistance thermometer

	Designation	Connection circuit	Measurement range	Measurement accuracy ${ }^{1)}$	Ambient temperature error
Standard	Pt100 EN 60751	2-wire/3-wire	-200 to $+850^{\circ} \mathrm{C}$	$\leq 0.05 \%$	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	Pt 50,500,1000 EN 60751	2-wire/3-wire	-200 to $+850^{\circ} \mathrm{C}$	$\leq 0.1 \%$	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	Cu50	2-wire/3-wire	-50 to $+200^{\circ} \mathrm{C}$	$\leq 0.1 \%$	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	Ni100 DIN 43760	2-wire/3-wire	-60 to $+250^{\circ} \mathrm{C}$	$\leq 0.05 \%$	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	KTY11-6	2-wire	-50 to $+150^{\circ} \mathrm{C}$	$\leq 1.0 \%$	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	PtK9	2-wire	Lithium-chloride sensor		
	Sensor lead resistance	$\max .30 \Omega$ per lead for 2-wire or 3-wire circuit			
	Meas. current	$250 \mu \mathrm{~A}$			
	Lead compensation	Not required for 3-wire circuit. With a 2 -wire circuit, the lead resistance can be compensated in software by a correction of the process value.			

Input for standard signals

Designation	Measurement range	Measurement accuracy ${ }^{1)}$	Ambient temperature error
Voltage	0 to 10 V -10 to +10 V -1 to +1 V 0 to +1 V 0 to 100 mV -100 to +100 mV Input resistance $\mathrm{RIN}>100 \mathrm{k} \Omega$	$\begin{aligned} & \leq 0.05 \% \\ & \leq 0.05 \% \end{aligned}$	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Current	4 to 20 mA , voltage drop $\leq 1 \mathrm{~V}$ 0 to 20 mA , voltage drop $\leq 1 \mathrm{~V}$	$\begin{aligned} & \leq 0.1 \% \\ & \leq 0.1 \% \end{aligned}$	$\begin{aligned} & 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
Heat current	0 to 50 mA AC	$\leq 1 \%$	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Potentiometer	min. 100Ω, max. $10 \mathrm{k} \Omega$		

${ }^{1}$) With 250 msec sampling time

Logic inputs

Technical data

Measurement circuit monitoring
In the event of a fault, the outputs move to a defined (configurable) status.

Sensor	Overrange/underrange	Probe or lead short-circuit	Probe or lead break
Thermocouple	-	-	-
Resistance thermometer	-	-	-
$\begin{array}{ll}\text { Voltage } & 2 \text { to } 10 \mathrm{~V} \\ 0 \text { to } 10 \mathrm{~V}\end{array}$			-
$\begin{array}{ll} \text { Current } & 4 \text { to } 20 \mathrm{~mA} \\ & 0 \text { to } 20 \mathrm{~mA} \end{array}$			"

- = recognized - = not recognized

Outputs

Relay contact rating contact life	changeover contact, or $2 \times$ make 3 A at 250 V AC resistive load 150,000 operations at rated load	
Logic current limiting	$\begin{aligned} & 0 / 5 \mathrm{~V} \\ & 20 \mathrm{~mA} \end{aligned}$	or$0 / 22 \mathrm{~V}$ 30 mA
Solid-state relay contact rating protection circuitry		1 A at 230 V varistor
Voltage output signals load resistance		$\begin{aligned} & 0 \text { to } 10 \mathrm{~V} / 2 \text { to } 10 \mathrm{~V} \\ & \mathrm{R}_{\text {load }} \geq 500 \Omega \end{aligned}$
Current output signals load resistance		0 to $20 \mathrm{~mA} / 4$ to 20 mA $\mathrm{R}_{\text {load }} \leq 450 \Omega$
Supply voltage for 2-wire transmitter voltage current		$\begin{aligned} & 22 \mathrm{~V} \\ & 30 \mathrm{~mA} \end{aligned}$

Controller

Color screen

Resolution	320×240 pixels
Size (screen diagonal)	$5 "(12.7 \mathrm{~cm})$
No. of colours	27 colours

Technical data

Electrical data

Supply voltage (switchmode PSU)	$110-240 \mathrm{~V} \mathrm{AC}-15 /+10 \% 48-63 \mathrm{~Hz}$
Electrical safety	to EN 61010, Part 1 overvoltage category III, pollution degree 2
Power consumption	max. 30 VA
Data backup	Flash memory
Electrical connection	at rear, via plug-in screw terminals conductor cross-section max. 2.5 mm2 with core ferrules (length: 10 mm$)$
Electromagnetic compatibility interference emission interference immunity	EN 61 326 Class B to industrial requirements

Housing

Housing type	housing and rear panel: metal for panel mounting as per ISO 43 700
Front bezel	plastic to UL94 V0 $144 \mathrm{~mm} \times 130 \mathrm{~mm}$
Mounting depth	170 mm
Panel cut-out	$95^{+0.8} \times 92^{+0.8} \mathrm{~mm}$
Ambient/storage temperature range	-5 to $50^{\circ} \mathrm{C} /-40$ to $+70^{\circ} \mathrm{C}$
Climatic conditions	rel. humidity $\leq 75 \%$ annual mean, no condensation
Operating position	horizontal
Enclosure protection	to EN 60529 front IP 65, rear IP 20 Weight (fully fitted)approx. 1400 g Membrane keypad\quad polyester film, resistant to normal washing and cleaning agents

Interface (COM1)

Interface type	PC-interface or RS 422/RS 485
Protocol	MODbus
Baud rate	$9600,19200,38400$
Device address	$1-255$
Minimum response time	$0-500 \mathrm{msec}$

Interface (COM2)

Profibus	
Device address	$1-128$

Connection diagram

Analog inputs

Outputs

Supply voltage

Dimensions [mm]

Ordering chart for Type 1150

Description	Item no.
Basic Type 20-30 V AC/DC $110-240 \mathrm{~V} 48-63 \mathrm{~Hz}$	$\begin{aligned} & 787703 \\ & 787704 \end{aligned}$
Input Module 1 analog input	787750
Output module 1 relay, changeover 1 semiconductor relay 2 relays, N/O contact 1 analog output	$\begin{aligned} & 787751 \\ & 787752 \\ & 787753 \\ & 787754 \end{aligned}$
Interface Profibus DP	787755
Supplementary units ${ }^{1)}$ Instrument channels 3+4 Registering function Mathematical and logic module	$\begin{aligned} & 787756 \\ & 787757 \\ & 787758 \end{aligned}$
Accessories PC-Interface for setup programmes Setup software with programme editor	$\begin{aligned} & 787759 \\ & 787760 \end{aligned}$

[^1]
[^0]: 1) Option
[^1]: ${ }^{1)}$ After the delivery of the basic type can this only be activated through the setup software.

